
Assignment 10 
1. Use the finite-difference method with h = 0.2 to approximate a solution to the boundary value problem 
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First, rewrite the ODE as 
         2 1

0.3 0.1 0.2u x u x u x x     . Next, we note that we can determine 

p, q and r as follows: 

a2 =  1.0; 
a1 = -0.3; 
a0 = -0.1; 
u_a = 2; 
u_b = 3; 
h = 0.2; 
% This is a LODE with constant coefficients, so 
% all three values 'p', 'q' and 'r' are also constant: 
p =  2*a2 -   a1*h; 
q = -4*a2 + 2*a0*h^2; 
r =  2*a2 +   a1*h; 
 
% This is the forcing function 
g = @(x)(-x - 0.2); 
% This is the corresponding matrix 
A = [q r 0 0 
     p q r 0 
     0 p q r 
     0 0 p q]; 
%                               2 
% The target vector is 2*g(x ) h  for k = 1, 2, 3, n - 1. 
%                           k 
b = 2*g( [0.2 0.4 0.6 0.8]' )*h^2 
% We have two Dirichlet boundary conditions, so we must update 
% the first and last vector entries: 
b(1)   = b(1)   - p*u_a; 
b(end) = b(end) - r*u_b; 
% Solve the system of linear equations 
u = A \ b; 
% Add back the values at 0 and 1: 
u = [2; u; 3] 
      u = 2.0000 
          2.2041 
          2.4135 
          2.6210 
          2.8192 
          3.0000  



2. Use the finite-difference method with h = 0.2 to approximate a solution to the boundary value problem 
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The set up is similar, but now we have 

% This is the corresponding matrix 
A = [q r 0 0 
     p q r 0 
     0 p q r 
     0 0 p q]; 
%                               2 
% The target vector is 2*g(x ) h  for k = 1, 2, 3, n - 1. 
%                           k 
b = 2*g( [0.2 0.4 0.6 0.8]' )*h^2 
% We have one insulated boundary condition, so we must update 
% the first row of the matrix: 
A(1, 1) = A(1, 1) + (4.0/3.0)*p; 
A(1, 2) = A(1, 2) - (1.0/3.0)*p; 
 
% We have one two Dirichlet boundary conditions, so we must update 
% the last vector entries: 
b(end) = b(end) - r*u_b; 
% Solve the system of linear equations 
u = A \ b; 
% Add back the values at x = 0 and x = 1, but at the left, we must 
% have points that have a slope 0 at x = 0. 
u = [(4.0/3.0)*u(1) - (1.0/3.0)*u(2); u; 3] 
      u = 3.1341 
          3.1323 
          3.1267 
          3.1090 
          3.0700 
          3.00000 
  



3. Given the function u(x, t) = t x1x2 – x1 + 2x2, approximate the partial derivative with respect to time and 

the gradient at the point t = 0.2 and 
0.3

0.5

 
  

 
x  using a value of t = h = 0.1. 

This can be done by hand, but here it is with Matlab: 

u = @(x, t)( t*x(1)*x(2) - x(1) + 2*x(2) ); 
t = 0.2; 
x = [0.3 -0.5]'; 
dt = 0.1; 
h  = 0.1; 
% The partial w.r.t. time 
(u(x, t + dt) - u(x, t - dt))/(2*dt) 
      ans = -0.15000 
% The gradient, or the partials with respect to the first and second 
% entries of the space argument 
[(u(x + h*[1 0]', t) - u(x - h*[1 0]', t))/(2*h) 
 (u(x + h*[0 1]', t) - u(x - h*[0 1]', t))/(2*h)] 
      ans = -1.1000 
             2.0600 
 
Note, because the function is linear in each of the variables, these approximations are actually also the exact 

values. In Maple: 

# Define a multi-variate function 'u' 
u := (x, y, t ) -> t*x*y - x + 2*y: 
# Calculate the partial derivative with respect to the third variable: 
D[3](u)(0.3, -0.5, 0.2); 

–0.15 

# Calculate the gradient, or a vectors of the partials w.r.t. the first 
# second variables 
<D[1](u)(0.3, -0.5, 0.2), D[2](u)(0.3, -0.5, 0.2)>; 

1.10

2.06

 
 
 

 

  



4. Given the function in Question 3, approximate all three second partials: with respect to t, x1, and x2. 

Because all these are linear in each of the variables, the concavity everywhere is zero, and this is shown by 

the approximations: 

u = @(t, x)( t*x(1)*x(2) - x(1) + 2*x(2) ); 
t = 0.2; 
x = [0.3 -0.5]'; 
dt = 0.1; 
h  = 0.1; 
% Approximate the second partial w.r.t. time 
(u(t + dt, x) - 2*u(t, x) + u(t - dt, x))/(dt^2) 
       ans = 2.2204e-14 
% Approximate the second partial w.r.t. the first space variable 
(u(t, x + h*[1 0]') - 2*u(t, x) + u(t, x - h*[1 0]'))/(h^2) 
       ans = 2.2204e-14 
% Approximate the second partial w.r.t. the second space variable 
(u(t, x + h*[0 1]') - 2*u(t, x) + u(t, x - h*[0 1]'))/(h^2) 
       ans = 0 
  



5. In class, we did not discuss an explicit formula for  
2

,u x y
x y



 
. Come up with such a formula. Show 

that your formula works by calculating this second partial explicitly using the process shown in your 

calculus course for the function in xexsin(y) at x = 1 and y = 2, and then calculating your approximation 

using h = 0.01. 

The partial with respect to the first variable is 
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The second partial with respect to y and then to x for the given function is excos(y) + xexcos(y), and we 

evaluate: 

% The bivariate function 
u = @(x, y)( x*exp(x)*sin(y) ); 
% The second partial w.r.t. the second variable, and then the first 
ddu = @(x, y)( exp(x)*cos(y) + x*exp(x)*cos(y) ); 
h = 0.01; 
% Our approximation at x = 1 and y = 2 
(u(1 + h, 2 + h) - u(1 + h, 2 - h) - u(1 - h, 2 + h) + u(1 - h, 2 - h))/(4*h^2) 
       ans = -2.262446473823010 
% The actual second partial at x = 1 and y = 2 
ddu(1, 2) 
       ans = -2.262408767513627  



6. Demonstrate that the formula for  
2

,u x y
x y



 
 that you found in Question 5 is the same formula you 

would find if you were to approximate  
2

,u x y
y x
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You will see that this is simply a rearrangement of the terms in the numerator of Question 5. 

  



7. Approximate a solution to the heat equation with four steps in time if the boundary conditions are 

ua(t) = 0 for t > 0 and ub(t) = 2 for t > 0 and the initial state is u0(x) = 1 – x if the interval in space is [0, 1] 

and h = 0.2. The coefficient  = 4. You should use a t, as described in the course notes, to ensure 

convergence. 

If 
2

1

2

t

h


 , then find t so that 

2

1

4

t

h


  or 

2

4

h
t


  , so us t = 0.0025. 

To do this by hand, we observe that our space-interval is [0, 1] and h = 0.2, so nx = 5, and the six x values 

are x0 = 0, x1 = 0.2, x2 = 0.4, x3 = 0.6, x4 = 0.8 and x5 = 1. Because the u0(x) = 1 – x, we can therefore 

calculate u0,0 = u0(x0) = u0(0) = 1, u1,0 = u0(x1) = u0(0.2) = 0.8, u2,0 = 0.6, u3,0 = 0.4 , u4,0 = 0.2, u5,0 = 0. 

Thus, we have: 

k xk uk,0    

0 0 1    

1 0.2 0.8    

2 0.4 0.6    

3 0.6 0.4    

4 0.8 0.2    

5 1 0    

 

Now, the boundary values are not turned on until after the first step, so the formula is just 

uk,ℓ+1 ← uk,ℓ + αΔt (uk–1,ℓ – 2uk,ℓ + uk+1,ℓ)/h2, 

and in this case, αΔt/h2 = 4·0.0025/0.22 = 0.25, so the calculation is 

uk,ℓ+1 ← uk,ℓ + 0.25(uk–1,ℓ – 2uk,ℓ + uk+1,ℓ). 

We start by calculating the four interior points with k = 1, 2, 3, 4, and in all cases, the sum in the parentheses 

is equal to zero, so there is no change in the u values! For example, 1 – 2·0.8 + 0.6 = 0. The two boundary 

values, however, now are changed.  

Thus, we have: 

k xk uk,0 uk,1   

0 0 1 0   

1 0.2 0.8 0.8   

2 0.4 0.6 0.6   

3 0.6 0.4 0.4   

4 0.8 0.2 0.2 u4,2   

5 1 0 2   

 

Once again, we calculate the four interior points: 

u1,2 ← u1,1 + 0.25(u0,1 – 2u1,1 + u2,1) = 0.8 + 0.25(0.0 – 2·0.8 + 0.6) = 0.55 

u2,2 ← u2,1 + 0.25(u1,1 – 2u2,1 + u3,1) = 0.6 + 0.25(0.8 – 2·0.6 + 0.4) = 0.6 

u3,2 ← u3,1 + 0.25(u2,1 – 2u3,1 + u4,1) = 0.4 + 0.25(0.6 – 2·0.4 + 0.2) = 0.4 

u4,2 ← u4,1 + 0.25(u3,1 – 2u4,1 + u5,1) = 0.2 + 0.25(0.4 – 2·0.2 + 2.0) = 0.7 



As you may expect, it is getting cooler at the one end, and warmer at the other. There is no change to the 

boundary values. 

  



Thus, we have: 

k xk uk,0 uk,1 uk,2  

0 0 1 0 0  

1 0.2 0.8 0.8 0.55  

2 0.4 0.6 0.6 0.6 u2,3  

3 0.6 0.4 0.4 0.4  

4 0.8 0.2 0.2 0.7  

5 1 0 2 2  

 

Once again, we calculate the four interior points: 

u1,3 ← u1,2 + 0.25(u0,2 – 2u1,2 + u2,2) = 0.55 + 0.25(0.0   – 2·0.55 + 0.6) = 0.425 

u2,3 ← u2,2 + 0.25(u1,2 – 2u2,2 + u3,2) = 0.6   + 0.25(0.55 – 2·0.6   + 0.4) = 0.5375 

u3,3 ← u3,2 + 0.25(u2,2 – 2u3,2 + u4,2) = 0.4   + 0.25(0.6   – 2·0.4   + 0.7) = 0.525 

u4,3 ← u4,2 + 0.25(u3,2 – 2u4,2 + u5,2) = 0.7   + 0.25(0.4   – 2·0.7   + 2.0) = 0.95 

Thus, we have, again with the same boundary values: 

k xk uk,0 uk,1 uk,2 uk,3 

0 0 1 0 0 0 

1 0.2 0.8 0.8 0.55 0.55 

2 0.4 0.6 0.6 0.6 0.6 

3 0.6 0.4 0.4 0.4 0.4 

4 0.8 0.2 0.2 0.7 0.7 

5 1 0 2 2 2 

 

% To do this in Matlab, first, set up the problem 
alpha = 4; 
a = 0; 
b = 1; 
u_init = @(x)( 1 - x ); 
u_a = @(t)( 0 ); 
u_b = @(t)( 2 ); 
 
% Second, set up the x-values, so 0.0  0.2  0.4  0.6  0.8  1.0 
h = 0.2; 
Nx = 5;         % The number of intervals in x 
xs = 0:h:1; 
% Third, set up the time values, so 0.0  0.0025  0.0050  0.0075  0.01 
dt = 0.0025; 
Nt = 4;         % The number of intervals in t 
ts = 0:dt:(4*dt); 
 
% Set up the grid as a 2-d array 
U = zeros( Nx + 1, Nt + 1 ); 
 
  



% We will assign the initial values at time t = 0 (in red) by calling 
% the function u    (x ) and then with each time step, we will call the 
%               init  k 
% boundary value functions u (t   ) and u (t   ) to determine the values 
%                           a  ell       b  ell 
% at the blue and cyan points, respectively. 
 
%   x 
%    k 
% a = 0.0   |   0         0         0         0         0 
%     0.2   |   0         0         0         0         0 
%     0.4   |   0         0         0         0         0 
%     0.6   |   0         0         0         0         0 
%     0.8   |   0         0         0         0         0 
% b = 1.0   |   0         0         0         0         0 
%           +------------------------------------------------ 
%          t    0      0.0025    0.0050    0.0075    0.0100 
%           ell 
 

% Thus, call and initialize the values at t  = 0 
%                                          0 
for k = 1:(Nx + 1) 
    U(k,1) = u_init(xs(k)); 
end 
 
% Now the 2d-array looks as follow, where the initial function is 1 - x 
%   x 
%    k 
% a = 0.0   |  1.0        0         0         0         0 
%     0.2   |  0.8        0         0         0         0 
%     0.4   |  0.6        0         0         0         0 
%     0.6   |  0.4        0         0         0         0 
%     0.8   |  0.2        0         0         0         0 
% b = 1.0   |  0.0        0         0         0         0 
%           +------------------------------------------------ 
%          t    0      0.0025    0.0050    0.0075    0.0100 
%           ell 
 
  



for ell = 1:Nt 
    for k = 2:Nx 
        % Estimate the temperature at the four interior points 
        %     The previous value 
        %                         alpha dt 
        %         plus the ratio ---------- 
        %                             2 
        %                            h 
        %         multiplied by the specified linear combination of 
        %         the previous three values in space   
        U(k, ell+1) = U(k, ell) + alpha*dt/h^2*(     ... 
            U(k-1, ell) - 2*U(k, ell) + U(k+1, ell)  ... 
        ); 
 
        % Evaluate the left-hand boundary (at a = 0) at 
        % corresponding time 
        U(1, ell+1) = u_a(ts(ell+1)); 
 
        % Similarly, evaluate the right-hand boundary (at b = 1) 
        % at the corresponding time 
        U(Nx+1, ell+1) = u_b(ts(ell+1)); 
    end 
end 
% After the first loop, because the initial state is in the steady 
% state, there is no change, except for the two boundary values: 
%   x 
%    k 
% a = 0.0   |  1.0       0.0       0         0         0 
%     0.2   |  0.8       0.8       0         0         0 
%     0.4   |  0.6       0.6       0         0         0 
%     0.6   |  0.4       0.4       0         0         0 
%     0.8   |  0.2       0.2       0         0         0 
% b = 1.0   |  0.0       2.0       0         0         0 
%           +------------------------------------------------ 
%          t    0      0.0025    0.0050    0.0075    0.0100 
%           ell 
 
% After the second loop, the left side at 'a' cools, while 
% the right side at 'b' heats up: 
%   x 
%    k 
% a = 0.0   |  1.0       0.0      0.0        0         0 
%     0.2   |  0.8       0.8      0.55       0         0 
%     0.4   |  0.6       0.6      0.6        0         0 
%     0.6   |  0.4       0.4      0.4        0         0 
%     0.8   |  0.2       0.2      0.7        0         0 
% b = 1.0   |  0.0       2.0      2.0        0         0 
%           +------------------------------------------------ 
%          t    0      0.0025    0.0050    0.0075    0.0100 
%           ell 



 
% After the third loop, the left side at 'a' continues to cool, while 
% the right side at 'b' continues to heats up, however, the cooling  
% and heating is continuing to propagate: 
%   x 
%    k 
% a = 0.0   |  1.0       0.0      0.0       0.0       0 
%     0.2   |  0.8       0.8      0.55      0.425     0 
%     0.4   |  0.6       0.6      0.6       0.5375    0 
%     0.6   |  0.4       0.4      0.4       0.525     0 
%     0.8   |  0.2       0.2      0.7       0.95      0 
% b = 1.0   |  0.0       2.0      2.0       0.0       0 
%           +------------------------------------------------ 
%          t    0      0.0025    0.0050    0.0075    0.0100 
%           ell 
 
% After the fourth loop, heat propagation continues: 
%   x 
%    k 
% a = 0.0   |  1.0       0.0      0.0       0.0      0 
%     0.2   |  0.8       0.8      0.55      0.425    0.246875 
%     0.4   |  0.6       0.6      0.6       0.5375   0.50625 
%     0.6   |  0.4       0.4      0.4       0.525    0.634375 
%     0.8   |  0.2       0.2      0.7       0.95     1.10625 
% b = 1.0   |  0.0       2.0      2.0       2.0      2.0 
%           +------------------------------------------------ 
%          t    0      0.0025    0.0050    0.0075    0.0100 
%           ell 
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