Assignment 10

1. Use the finite-difference method with $h=0.2$ to approximate a solution to the boundary value problem

$$
\begin{aligned}
u^{(2)}(x) & =0.3 u^{(1)}(x)+0.1 u(x)-x-0.2 \\
u(0) & =2 \\
u(1) & =3
\end{aligned}
$$

First, rewrite the ODE as $u^{(2)}(x)-0.3 u^{(1)}(x)-0.1 u(x)=-x-0.2$. Next, we note that we can determine p, q and r as follows:

```
a2 = 1.0;
a1 = -0.3;
a0 = -0.1;
u_a = 2;
u_b = 3;
h = 0.2;
% This is a LODE with constant coefficients, so
% all three values 'p', 'q' and 'r' are also constant:
p = 2*a2 - a1*h;
q = -4*a2 + 2*a0*h^2;
r = 2*a2 + a1*h;
% This is the forcing function
g = @(x)(-x - 0.2);
% This is the corresponding matrix
A = [q r 0 0
    p q r 0
    0 p q r
    0 0 p q];
% 2
% The target vector is 2*g(x ) h for k = 1, 2, 3, n - 1.
% k
b = 2*g( [0.2 0.4 0.6 0.8]' )*h^2
% We have two Dirichlet boundary conditions, so we must update
% the first and last vector entries:
b(1) = b(1) - p*u_a;
b(end) = b(end) - r*u_b;
% Solve the system of linear equations
u = A \ b;
% Add back the values at 0 and 1:
u = [2; u; 3]
        u = 2.0000
                            2.2041
                            2.4135
                            2.6210
                                    2.8192
                                    3.0000
```

2. Use the finite-difference method with $h=0.2$ to approximate a solution to the boundary value problem

$$
\begin{aligned}
u^{(2)}(x) & =0.3 u^{(1)}(x)+0.1 u(x)-x-0.2 \\
u^{(1)}(0) & =0 \\
u(1) & =3
\end{aligned}
$$

The set up is similar, but now we have

```
% This is the corresponding matrix
A = [q r 0 0
    p q r 0
    0 p q r
    0 0 p q];
% 2
% The target vector is 2*g(x ) h for k = 1, 2, 3, n - 1.
% k
b = 2*g( [0.2 0.4 0.6 0.8]' )*h^2
% We have one insulated boundary condition, so we must update
% the first row of the matrix:
A(1, 1) = A(1, 1) + (4.0/3.0)*p;
A(1, 2) = A(1, 2) - (1.0/3.0)*p;
% We have one two Dirichlet boundary conditions, so we must update
% the last vector entries:
b(end) = b(end) - r*u_b;
% Solve the system of linear equations
u = A \ b;
% Add back the values at }\textrm{x}=0\mathrm{ and }\textrm{x}=1\mathrm{ , but at the left, we must
% have points that have a slope 0 at x = 0.
u = [(4.0/3.0)*u(1) - (1.0/3.0)*u(2); u; 3]
    u = 3.1341
    3.1323
    3.1267
    3.1090
    3.0700
    3.00000
```

3. Given the function $u(\mathbf{x}, t)=t x_{1} x_{2}-x_{1}+2 x_{2}$, approximate the partial derivative with respect to time and the gradient at the point $t=0.2$ and $\mathbf{x}=\binom{0.3}{-0.5}$ using a value of $\Delta t=h=0.1$.

This can be done by hand, but here it is with Matlab:

```
u = @(x, t)( t*x(1)*x(2) - x(1) + 2*x(2) );
t = 0.2;
x = [0.3 -0.5]';
dt = 0.1;
h = 0.1;
% The partial w.r.t. time
(u(x, t + dt) - u(x, t - dt))/(2*dt)
    ans = -0.15000
% The gradient, or the partials with respect to the first and second
% entries of the space argument
[(u(x + h*[1 0]', t) - u(x - h*[1 0]', t))/(2*h)
    (u(x + h*[0 1]', t) - u(x - h*[0 1]', t))/(2*h)]
        ans = -1.1000
                        2.0600
```

Note, because the function is linear in each of the variables, these approximations are actually also the exact values. In Maple:

```
# Define a multi-variate function 'u'
u := (x, y, t ) -> t*x*y - x + 2*y:
# Calculate the partial derivative with respect to the third variable:
D[3](u)(0.3, -0.5, 0.2);
    -0.15
# Calculate the gradient, or a vectors of the partials w.r.t. the first
# second variables
<D[1](u)(0.3, -0.5, 0.2), D[2](u)(0.3, -0.5, 0.2)>;
    (r
```

4. Given the function in Question 3, approximate all three second partials: with respect to t, x_{1}, and x_{2}.

Because all these are linear in each of the variables, the concavity everywhere is zero, and this is shown by the approximations:

```
u = @(t, x)( t*x(1)*x(2) - x(1) + 2*x(2) );
t = 0.2;
x = [0.3 -0.5]';
dt = 0.1;
h = 0.1;
% Approximate the second partial w.r.t. time
(u(t + dt, x) - 2*u(t, x) + u(t - dt, x))/(dt^2)
    ans = 2.2204e-14
% Approximate the second partial w.r.t. the first space variable
(u(t, x + h*[1 0]') - 2*u(t, x) + u(t, x - h*[1 0]'))/(h^2)
    ans = 2.2204e-14
% Approximate the second partial w.r.t. the second space variable
(u(t, x + h*[0 1]') - 2*u(t, x) + u(t, x - h*[0 1]'))/(h^2)
    ans = 0
```

5. In class, we did not discuss an explicit formula for $\frac{\partial^{2}}{\partial x \partial y} u(x, y)$. Come up with such a formula. Show that your formula works by calculating this second partial explicitly using the process shown in your calculus course for the function in $x e^{x} \sin (y)$ at $x=1$ and $y=2$, and then calculating your approximation using $h=0.01$.

The partial with respect to the first variable is

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x \partial y} u(x, y) & =\frac{\partial}{\partial x} \frac{\partial}{\partial y} u(x, y) \\
& \approx \frac{\partial}{\partial x} \frac{u(x, y+h)-u(x, y-h)}{2 h} \\
& \approx \frac{\frac{u(x+h, y+h)-u(x+h, y-h)}{2 h}-\frac{u(x-h, y+h)-u(x-h, y-h)}{2 h}}{2 h} \\
& =\frac{u(x+h, y+h)-u(x+h, y-h)-u(x-h, y+h)+u(x-h, y-h)}{4 h^{2}}
\end{aligned}
$$

The second partial with respect to y and then to x for the given function is $e^{x} \cos (y)+x e^{x} \cos (y)$, and we evaluate:

```
% The bivariate function
u = @(x, y)( x*exp(x)*sin(y) );
% The second partial w.r.t. the second variable, and then the first
ddu = @(x, y)( exp(x)*\operatorname{cos}(y) + x*exp(x)*\operatorname{cos}(y));
h = 0.01;
% Our approximation at x = 1 and y = 2
(u(1 + h, 2 + h) - u(1 + h, 2 - h) - u(1 - h, 2 + h) +u(1 - h, 2 - h))/(4*h^2)
    ans = -2.262446473823010
% The actual second partial at x = 1 and y = 2
ddu(1, 2)
    ans = -2.262408767513627
```

6. Demonstrate that the formula for $\frac{\partial^{2}}{\partial x \partial y} u(x, y)$ that you found in Question 5 is the same formula you would find if you were to approximate $\frac{\partial^{2}}{\partial y \partial x} u(x, y)$.

$$
\begin{aligned}
\frac{\partial^{2}}{\partial y \partial x} u(x, y) & =\frac{\partial}{\partial y} \frac{\partial}{\partial x} u(x, y) \\
& \approx \frac{\partial}{\partial y} \frac{u(x+h, y)-u(x-h, y)}{2 h} \\
& \approx \frac{\frac{u(x+h, y+h)-u(x-h, y+h)}{2 h}-\frac{u(x+h, y-h)-u(x-h, y-h)}{2 h}}{2 h} \\
& =\frac{u(x+h, y+h)-u(x-h, y+h)-u(x+h, y-h)+u(x-h, y-h)}{4 h^{2}}
\end{aligned}
$$

You will see that this is simply a rearrangement of the terms in the numerator of Question 5.
7. Approximate a solution to the heat equation with four steps in time if the boundary conditions are $u_{a}(t)=0$ for $t>0$ and $u_{b}(t)=2$ for $t>0$ and the initial state is $u_{0}(x)=1-x$ if the interval in space is $[0,1]$ and $h=0.2$. The coefficient $\alpha=4$. You should use a Δt, as described in the course notes, to ensure convergence.

If $\frac{\alpha \Delta t}{h^{2}}<\frac{1}{2}$, then find Δt so that $\frac{\alpha \Delta t}{h^{2}}=\frac{1}{4}$ or $\Delta t=\frac{h^{2}}{4 \alpha}$, so us $\Delta t=0.0025$.
To do this by hand, we observe that our space-interval is $[0,1]$ and $h=0.2$, so $n_{x}=5$, and the six x values are $x_{0}=0, x_{1}=0.2, x_{2}=0.4, x_{3}=0.6, x_{4}=0.8$ and $x_{5}=1$. Because the $u_{0}(x)=1-x$, we can therefore calculate $u_{0,0}=u_{0}\left(x_{0}\right)=u_{0}(0)=1, u_{1,0}=u_{0}\left(x_{1}\right)=u_{0}(0.2)=0.8, u_{2,0}=0.6, u_{3,0}=0.4, u_{4,0}=0.2, u_{5,0}=0$.

Thus, we have:

k	x_{k}	$u_{k, 0}$			
0	0	1			
1	0.2	0.8			
2	0.4	0.6			
3	0.6	0.4			
4	0.8	0.2			
5	1	0			

Now, the boundary values are not turned on until after the first step, so the formula is just

$$
u_{k, \ell+1} \leftarrow u_{k, \ell}+\alpha \Delta t\left(u_{k-1, \ell}-2 u_{k, \ell}+u_{k+1, \ell}\right) / h^{2},
$$

and in this case, $\alpha \Delta t / h^{2}=4 \cdot 0.0025 / 0.2^{2}=0.25$, so the calculation is

$$
u_{k, \ell+1} \leftarrow u_{k, \ell}+0.25\left(u_{k-1, \ell}-2 u_{k, \ell}+u_{k+1, \ell}\right) .
$$

We start by calculating the four interior points with $k=1,2,3,4$, and in all cases, the sum in the parentheses is equal to zero, so there is no change in the u values! For example, $1-2 \cdot 0.8+0.6=0$. The two boundary values, however, now are changed.

Thus, we have:

k	x_{k}	$u_{k, 0}$	$u_{k, 1}$		
0	0	1	0		
1	0.2	0.8	0.8		
2	0.4	0.6	0.6		
3	0.6	0.4	0.4		
4	0.8	0.2	0.2	$u_{4,2}$	
5	1	0	2		

Once again, we calculate the four interior points:

$$
\begin{aligned}
& u_{1,2} \leftarrow u_{1,1}+0.25\left(u_{0,1}-2 u_{1,1}+u_{2,1}\right)=0.8+0.25(0.0-2 \cdot 0.8+0.6)=0.55 \\
& u_{2,2} \leftarrow u_{2,1}+0.25\left(u_{1,1}-2 u_{2,1}+u_{3,1}\right)=0.6+0.25(0.8-2 \cdot 0.6+0.4)=0.6 \\
& u_{3,2} \leftarrow u_{3,1}+0.25\left(u_{2,1}-2 u_{3,1}+u_{4,1}\right)=0.4+0.25(0.6-2 \cdot 0.4+0.2)=0.4 \\
& u_{4,2} \leftarrow u_{4,1}+0.25\left(u_{3,1}-2 u_{4,1}+u_{5,1}\right)=0.2+0.25(0.4-2 \cdot 0.2+2.0)=0.7
\end{aligned}
$$

As you may expect, it is getting cooler at the one end, and warmer at the other. There is no change to the boundary values.

Thus, we have:

k	x_{k}	$u_{k, 0}$	$u_{k, 1}$	$u_{k, 2}$	
0	0	1	0	0	
1	0.2	0.8	0.8	0.55	
2	0.4	0.6	0.6	0.6	$u_{2,3}$
3	0.6	0.4	0.4	0.4	
4	0.8	0.2	0.2	0.7	
5	1	0	2	2	

Once again, we calculate the four interior points:

$$
\begin{aligned}
& u_{1,3} \leftarrow u_{1,2}+0.25\left(u_{0,2}-2 u_{1,2}+u_{2,2}\right)=0.55+0.25(0.0-2 \cdot 0.55+0.6)=0.425 \\
& u_{2,3} \leftarrow u_{2,2}+0.25\left(u_{1,2}-2 u_{2,2}+u_{3,2}\right)=0.6+0.25(0.55-2 \cdot 0.6+0.4)=0.5375 \\
& u_{3,3} \leftarrow u_{3,2}+0.25\left(u_{2,2}-2 u_{3,2}+u_{4,2}\right)=0.4+0.25(0.6-2 \cdot 0.4+0.7)=0.525 \\
& u_{4,3} \leftarrow u_{4,2}+0.25\left(u_{3,2}-2 u_{4,2}+u_{5,2}\right)=0.7+0.25(0.4-2 \cdot 0.7+2.0)=0.95
\end{aligned}
$$

Thus, we have, again with the same boundary values:

k	x_{k}	$u_{k, 0}$	$u_{k, 1}$	$u_{k, 2}$	$u_{k, 3}$
0	0	1	0	0	0
1	0.2	0.8	0.8	0.55	0.55
2	0.4	0.6	0.6	0.6	0.6
3	0.6	0.4	0.4	0.4	0.4
4	0.8	0.2	0.2	0.7	0.7
5	1	0	2	2	2

\% To do this in Matlab, first, set up the problem
alpha = 4;
$a=0 ;$
b = 1;
u_init $=@(x)(1-x)$;
u_a $=@(\mathrm{t})(0)$;
u_b $=@(t)(2) ;$

```
% Second, set up the x-values, so 0.0 0.2 0.4 0.6 0.8 1.0
h = 0.2;
Nx = 5; % The number of intervals in x
xs = 0:h:1;
% Third, set up the time values, so 0.0 0.0025 0.0050 0.0075 0.01
dt = 0.0025;
Nt = 4; % The number of intervals in t
ts = 0:dt:(4*dt);
```

\% Set up the grid as a $2-d$ array
$\mathrm{U}=\operatorname{zeros}(\mathrm{Nx}+1, \mathrm{Nt}+1$);

```
% We will assign the initial values at time t = 0 (in red) by calling
% the function u (x ) and then with each time step, we will call the
% init k
% boundary value functions u (t ) and u (t ) to determine the values
% a ell b ell
% at the blue and cyan points, respectively.
```



```
% Thus, call and initialize the values at t = 0
%
for k = 1:(Nx + 1)
    U(k,1) = u_init(xs(k));
end
```

\% Now the 2d-array looks as follow, where the initial function is 1 - x
\% \quad x
$\% \quad$ k


```
for ell = 1:Nt
    for k = 2:Nx
        % Estimate the temperature at the four interior points
            % The previous value
                                    alpha dt
                                    plus the ratio ----------
                                    2
                                    h
                                    multiplied by the specified linear combination of
                                    the previous three values in space
            U(k, ell+1) = U(k, ell) + alpha*dt/h^2*( ...
                U(k-1, ell) - 2*U(k, ell) + U(k+1, ell) ...
            );
            % Evaluate the left-hand boundary (at a = 0) at
            % corresponding time
            U(1, ell+1) = u_a(ts(ell+1));
            % Similarly, evaluate the right-hand boundary (at b = 1)
            % at the corresponding time
            U(Nx+1, ell+1) = u_b(ts(ell+1));
    end
end
% After the first loop, because the initial state is in the steady
% state, there is no change, except for the two boundary values:
% x
% k
```


After the second loop, the left side at 'a' cools, while
the right side at 'b' heats up:
\% x

Acknowledgement: Andy Liu for pointing out an index was incorrect in the solution to Question 2. Harsh Patel for asking me to add an expanded worked-out answer for Question 7. Dhyey Patel for noting that I accidentally referred to $f^{(1)}(x)$ instead of $u^{(1)}(x)$ in Question 1.

