
Assignment 10
1. Use the finite-difference method with h = 0.2 to approximate a solution to the boundary value problem

2 1
0.3 0.1 0.2

0 2

1 3

u x u x u x x

u

u

First, rewrite the ODE as
 2 1

0.3 0.1 0.2u x u x u x x . Next, we note that we can determine

p, q and r as follows:

a2 = 1.0;
a1 = -0.3;
a0 = -0.1;
u_a = 2;
u_b = 3;
h = 0.2;
% This is a LODE with constant coefficients, so
% all three values 'p', 'q' and 'r' are also constant:
p = 2*a2 - a1*h;
q = -4*a2 + 2*a0*h^2;
r = 2*a2 + a1*h;

% This is the forcing function
g = @(x)(-x - 0.2);
% This is the corresponding matrix
A = [q r 0 0
 p q r 0
 0 p q r
 0 0 p q];
% 2
% The target vector is 2*g(x) h for k = 1, 2, 3, n - 1.
% k
b = 2*g([0.2 0.4 0.6 0.8]')*h^2
% We have two Dirichlet boundary conditions, so we must update
% the first and last vector entries:
b(1) = b(1) - p*u_a;
b(end) = b(end) - r*u_b;
% Solve the system of linear equations
u = A \ b;
% Add back the values at 0 and 1:
u = [2; u; 3]
 u = 2.0000
 2.2041
 2.4135
 2.6210
 2.8192
 3.0000

2. Use the finite-difference method with h = 0.2 to approximate a solution to the boundary value problem

2 1

1

0.3 0.1 0.2

0 0

1 3

u x u x u x x

u

u

The set up is similar, but now we have

% This is the corresponding matrix
A = [q r 0 0
 p q r 0
 0 p q r
 0 0 p q];
% 2
% The target vector is 2*g(x) h for k = 1, 2, 3, n - 1.
% k
b = 2*g([0.2 0.4 0.6 0.8]')*h^2
% We have one insulated boundary condition, so we must update
% the first row of the matrix:
A(1, 1) = A(1, 1) + (4.0/3.0)*p;
A(1, 2) = A(1, 2) - (1.0/3.0)*p;

% We have one two Dirichlet boundary conditions, so we must update
% the last vector entries:
b(end) = b(end) - r*u_b;
% Solve the system of linear equations
u = A \ b;
% Add back the values at x = 0 and x = 1, but at the left, we must
% have points that have a slope 0 at x = 0.
u = [(4.0/3.0)*u(1) - (1.0/3.0)*u(2); u; 3]
 u = 3.1341
 3.1323
 3.1267
 3.1090
 3.0700
 3.00000

3. Given the function u(x, t) = t x1x2 – x1 + 2x2, approximate the partial derivative with respect to time and

the gradient at the point t = 0.2 and
0.3

0.5

x using a value of t = h = 0.1.

This can be done by hand, but here it is with Matlab:

u = @(x, t)(t*x(1)*x(2) - x(1) + 2*x(2));
t = 0.2;
x = [0.3 -0.5]';
dt = 0.1;
h = 0.1;
% The partial w.r.t. time
(u(x, t + dt) - u(x, t - dt))/(2*dt)
 ans = -0.15000
% The gradient, or the partials with respect to the first and second
% entries of the space argument
[(u(x + h*[1 0]', t) - u(x - h*[1 0]', t))/(2*h)
 (u(x + h*[0 1]', t) - u(x - h*[0 1]', t))/(2*h)]
 ans = -1.1000
 2.0600

Note, because the function is linear in each of the variables, these approximations are actually also the exact

values. In Maple:

Define a multi-variate function 'u'
u := (x, y, t) -> t*x*y - x + 2*y:
Calculate the partial derivative with respect to the third variable:
D[3](u)(0.3, -0.5, 0.2);

–0.15

Calculate the gradient, or a vectors of the partials w.r.t. the first
second variables
<D[1](u)(0.3, -0.5, 0.2), D[2](u)(0.3, -0.5, 0.2)>;

1.10

2.06

4. Given the function in Question 3, approximate all three second partials: with respect to t, x1, and x2.

Because all these are linear in each of the variables, the concavity everywhere is zero, and this is shown by

the approximations:

u = @(t, x)(t*x(1)*x(2) - x(1) + 2*x(2));
t = 0.2;
x = [0.3 -0.5]';
dt = 0.1;
h = 0.1;
% Approximate the second partial w.r.t. time
(u(t + dt, x) - 2*u(t, x) + u(t - dt, x))/(dt^2)
 ans = 2.2204e-14
% Approximate the second partial w.r.t. the first space variable
(u(t, x + h*[1 0]') - 2*u(t, x) + u(t, x - h*[1 0]'))/(h^2)
 ans = 2.2204e-14
% Approximate the second partial w.r.t. the second space variable
(u(t, x + h*[0 1]') - 2*u(t, x) + u(t, x - h*[0 1]'))/(h^2)
 ans = 0

5. In class, we did not discuss an explicit formula for
2

,u x y
x y

. Come up with such a formula. Show

that your formula works by calculating this second partial explicitly using the process shown in your

calculus course for the function in xexsin(y) at x = 1 and y = 2, and then calculating your approximation

using h = 0.01.

The partial with respect to the first variable is

2

2

, ,

, ,

2

, , , ,

2 2

2

, , , ,

4

u x y u x y
x y x y

u x y h u x y h

x h

u x h y h u x h y h u x h y h u x h y h

h h

h

u x h y h u x h y h u x h y h u x h y h

h

The second partial with respect to y and then to x for the given function is excos(y) + xexcos(y), and we

evaluate:

% The bivariate function
u = @(x, y)(x*exp(x)*sin(y));
% The second partial w.r.t. the second variable, and then the first
ddu = @(x, y)(exp(x)*cos(y) + x*exp(x)*cos(y));
h = 0.01;
% Our approximation at x = 1 and y = 2
(u(1 + h, 2 + h) - u(1 + h, 2 - h) - u(1 - h, 2 + h) + u(1 - h, 2 - h))/(4*h^2)
 ans = -2.262446473823010
% The actual second partial at x = 1 and y = 2
ddu(1, 2)
 ans = -2.262408767513627

6. Demonstrate that the formula for
2

,u x y
x y

 that you found in Question 5 is the same formula you

would find if you were to approximate
2

,u x y
y x

.

2

2

, ,

, ,

2

, , , ,

2 2

2

, , , ,

4

u x y u x y
y x y x

u x h y u x h y

y h

u x h y h u x h y h u x h y h u x h y h

h h

h

u x h y h u x h y h u x h y h u x h y h

h

You will see that this is simply a rearrangement of the terms in the numerator of Question 5.

7. Approximate a solution to the heat equation with four steps in time if the boundary conditions are

ua(t) = 0 for t > 0 and ub(t) = 2 for t > 0 and the initial state is u0(x) = 1 – x if the interval in space is [0, 1]

and h = 0.2. The coefficient = 4. You should use a t, as described in the course notes, to ensure

convergence.

If
2

1

2

t

h

 , then find t so that

2

1

4

t

h

 or

2

4

h
t

 , so us t = 0.0025.

To do this by hand, we observe that our space-interval is [0, 1] and h = 0.2, so nx = 5, and the six x values

are x0 = 0, x1 = 0.2, x2 = 0.4, x3 = 0.6, x4 = 0.8 and x5 = 1. Because the u0(x) = 1 – x, we can therefore

calculate u0,0 = u0(x0) = u0(0) = 1, u1,0 = u0(x1) = u0(0.2) = 0.8, u2,0 = 0.6, u3,0 = 0.4 , u4,0 = 0.2, u5,0 = 0.

Thus, we have:

k xk uk,0

0 0 1

1 0.2 0.8

2 0.4 0.6

3 0.6 0.4

4 0.8 0.2

5 1 0

Now, the boundary values are not turned on until after the first step, so the formula is just

uk,ℓ+1 ← uk,ℓ + αΔt (uk–1,ℓ – 2uk,ℓ + uk+1,ℓ)/h2,

and in this case, αΔt/h2 = 4·0.0025/0.22 = 0.25, so the calculation is

uk,ℓ+1 ← uk,ℓ + 0.25(uk–1,ℓ – 2uk,ℓ + uk+1,ℓ).

We start by calculating the four interior points with k = 1, 2, 3, 4, and in all cases, the sum in the parentheses

is equal to zero, so there is no change in the u values! For example, 1 – 2·0.8 + 0.6 = 0. The two boundary

values, however, now are changed.

Thus, we have:

k xk uk,0 uk,1

0 0 1 0

1 0.2 0.8 0.8

2 0.4 0.6 0.6

3 0.6 0.4 0.4

4 0.8 0.2 0.2 u4,2

5 1 0 2

Once again, we calculate the four interior points:

u1,2 ← u1,1 + 0.25(u0,1 – 2u1,1 + u2,1) = 0.8 + 0.25(0.0 – 2·0.8 + 0.6) = 0.55

u2,2 ← u2,1 + 0.25(u1,1 – 2u2,1 + u3,1) = 0.6 + 0.25(0.8 – 2·0.6 + 0.4) = 0.6

u3,2 ← u3,1 + 0.25(u2,1 – 2u3,1 + u4,1) = 0.4 + 0.25(0.6 – 2·0.4 + 0.2) = 0.4

u4,2 ← u4,1 + 0.25(u3,1 – 2u4,1 + u5,1) = 0.2 + 0.25(0.4 – 2·0.2 + 2.0) = 0.7

As you may expect, it is getting cooler at the one end, and warmer at the other. There is no change to the

boundary values.

Thus, we have:

k xk uk,0 uk,1 uk,2

0 0 1 0 0

1 0.2 0.8 0.8 0.55

2 0.4 0.6 0.6 0.6 u2,3

3 0.6 0.4 0.4 0.4

4 0.8 0.2 0.2 0.7

5 1 0 2 2

Once again, we calculate the four interior points:

u1,3 ← u1,2 + 0.25(u0,2 – 2u1,2 + u2,2) = 0.55 + 0.25(0.0 – 2·0.55 + 0.6) = 0.425

u2,3 ← u2,2 + 0.25(u1,2 – 2u2,2 + u3,2) = 0.6 + 0.25(0.55 – 2·0.6 + 0.4) = 0.5375

u3,3 ← u3,2 + 0.25(u2,2 – 2u3,2 + u4,2) = 0.4 + 0.25(0.6 – 2·0.4 + 0.7) = 0.525

u4,3 ← u4,2 + 0.25(u3,2 – 2u4,2 + u5,2) = 0.7 + 0.25(0.4 – 2·0.7 + 2.0) = 0.95

Thus, we have, again with the same boundary values:

k xk uk,0 uk,1 uk,2 uk,3

0 0 1 0 0 0

1 0.2 0.8 0.8 0.55 0.55

2 0.4 0.6 0.6 0.6 0.6

3 0.6 0.4 0.4 0.4 0.4

4 0.8 0.2 0.2 0.7 0.7

5 1 0 2 2 2

% To do this in Matlab, first, set up the problem
alpha = 4;
a = 0;
b = 1;
u_init = @(x)(1 - x);
u_a = @(t)(0);
u_b = @(t)(2);

% Second, set up the x-values, so 0.0 0.2 0.4 0.6 0.8 1.0
h = 0.2;
Nx = 5; % The number of intervals in x
xs = 0:h:1;
% Third, set up the time values, so 0.0 0.0025 0.0050 0.0075 0.01
dt = 0.0025;
Nt = 4; % The number of intervals in t
ts = 0:dt:(4*dt);

% Set up the grid as a 2-d array
U = zeros(Nx + 1, Nt + 1);

% We will assign the initial values at time t = 0 (in red) by calling
% the function u (x) and then with each time step, we will call the
% init k
% boundary value functions u (t) and u (t) to determine the values
% a ell b ell
% at the blue and cyan points, respectively.

% x
% k
% a = 0.0 | 0 0 0 0 0
% 0.2 | 0 0 0 0 0
% 0.4 | 0 0 0 0 0
% 0.6 | 0 0 0 0 0
% 0.8 | 0 0 0 0 0
% b = 1.0 | 0 0 0 0 0
% +--
% t 0 0.0025 0.0050 0.0075 0.0100
% ell

% Thus, call and initialize the values at t = 0
% 0
for k = 1:(Nx + 1)
 U(k,1) = u_init(xs(k));
end

% Now the 2d-array looks as follow, where the initial function is 1 - x
% x
% k
% a = 0.0 | 1.0 0 0 0 0
% 0.2 | 0.8 0 0 0 0
% 0.4 | 0.6 0 0 0 0
% 0.6 | 0.4 0 0 0 0
% 0.8 | 0.2 0 0 0 0
% b = 1.0 | 0.0 0 0 0 0
% +--
% t 0 0.0025 0.0050 0.0075 0.0100
% ell

for ell = 1:Nt
 for k = 2:Nx
 % Estimate the temperature at the four interior points
 % The previous value
 % alpha dt
 % plus the ratio ----------
 % 2
 % h
 % multiplied by the specified linear combination of
 % the previous three values in space
 U(k, ell+1) = U(k, ell) + alpha*dt/h^2*(...
 U(k-1, ell) - 2*U(k, ell) + U(k+1, ell) ...
);

 % Evaluate the left-hand boundary (at a = 0) at
 % corresponding time
 U(1, ell+1) = u_a(ts(ell+1));

 % Similarly, evaluate the right-hand boundary (at b = 1)
 % at the corresponding time
 U(Nx+1, ell+1) = u_b(ts(ell+1));
 end
end
% After the first loop, because the initial state is in the steady
% state, there is no change, except for the two boundary values:
% x
% k
% a = 0.0 | 1.0 0.0 0 0 0
% 0.2 | 0.8 0.8 0 0 0
% 0.4 | 0.6 0.6 0 0 0
% 0.6 | 0.4 0.4 0 0 0
% 0.8 | 0.2 0.2 0 0 0
% b = 1.0 | 0.0 2.0 0 0 0
% +--
% t 0 0.0025 0.0050 0.0075 0.0100
% ell

% After the second loop, the left side at 'a' cools, while
% the right side at 'b' heats up:
% x
% k
% a = 0.0 | 1.0 0.0 0.0 0 0
% 0.2 | 0.8 0.8 0.55 0 0
% 0.4 | 0.6 0.6 0.6 0 0
% 0.6 | 0.4 0.4 0.4 0 0
% 0.8 | 0.2 0.2 0.7 0 0
% b = 1.0 | 0.0 2.0 2.0 0 0
% +--
% t 0 0.0025 0.0050 0.0075 0.0100
% ell

% After the third loop, the left side at 'a' continues to cool, while
% the right side at 'b' continues to heats up, however, the cooling
% and heating is continuing to propagate:
% x
% k
% a = 0.0 | 1.0 0.0 0.0 0.0 0
% 0.2 | 0.8 0.8 0.55 0.425 0
% 0.4 | 0.6 0.6 0.6 0.5375 0
% 0.6 | 0.4 0.4 0.4 0.525 0
% 0.8 | 0.2 0.2 0.7 0.95 0
% b = 1.0 | 0.0 2.0 2.0 0.0 0
% +--
% t 0 0.0025 0.0050 0.0075 0.0100
% ell

% After the fourth loop, heat propagation continues:
% x
% k
% a = 0.0 | 1.0 0.0 0.0 0.0 0
% 0.2 | 0.8 0.8 0.55 0.425 0.246875
% 0.4 | 0.6 0.6 0.6 0.5375 0.50625
% 0.6 | 0.4 0.4 0.4 0.525 0.634375
% 0.8 | 0.2 0.2 0.7 0.95 1.10625
% b = 1.0 | 0.0 2.0 2.0 2.0 2.0
% +--
% t 0 0.0025 0.0050 0.0075 0.0100
% ell

Acknowledgement: Andy Liu for pointing out an index was incorrect in the solution to Question 2. Harsh

Patel for asking me to add an expanded worked-out answer for Question 7. Dhyey Patel for noting that I

accidentally referred to f (1)(x) instead of u(1)(x) in Question 1.

